
J. Fluid Mech. (2002), vol. 465, pp. 59–97. c© 2002 Cambridge University Press

DOI: 10.1017/S0022112002008947 Printed in the United Kingdom

59

The transition from steady to weakly turbulent
flow in a close-packed ordered array of spheres
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The sequence of transitions in going from steady to unsteady chaotic flow in a
close-packed face-centred cubic array of spheres is examined using lattice-Boltzmann
simulations. The transition to unsteady flow occurs via a supercritical Hopf bifurcation
in which only the streamwise component of the spatially averaged velocity fluctuates
and certain reflectional symmetries are broken. At larger Reynolds numbers, the
cross-stream components of the spatially averaged velocity fluctuate with frequencies
that are incommensurate with those of the streamwise component. This transition
is accompanied by the breaking of rotational symmetries that persisted through
the Hopf bifurcation. The resulting trajectories in the spatially averaged velocity
phase space are quasi-periodic. At larger Reynolds numbers, the fluctuations are
chaotic, having continuous frequency spectra with no easily identified fundamental
frequencies. Visualizations of the unsteady flows in various dynamic states show that
vortices are produced in which the velocity and vorticity are closely aligned. With
increasing Reynolds number, the geometrical structure of the flow changes from
one that is dominated by extension and shear to one in which the streamlines are
helical. A mechanism for the dynamics is proposed in which energy is transferred
to smaller scales by the dynamic interaction of vortices sustained by the underlying
time-averaged flow.

1. Introduction
The transition from steady to unsteady flow in porous media and the ensuing

dynamics are not well understood because fluid flow in most porous media is extremely
difficult to visualize and measure at the microscale. The length scales are typically
of the order of or smaller than diagnostic probes, such as hot-wire anemometers.
Furthermore, the presence of the solid makes it difficult to visualize such flows using
quantitative optical techniques (Dybbs & Edwards 1984).

For unsteady flows in the presence of a steady applied pressure gradient, the flow
is typically referred to as turbulent, even when the Reynolds number is relatively
small. References to turbulent flow (Kaviany 1995) are motivated by observations of
microscale hydrodynamic dispersion – typically a dye tracer – occurring in the small
gaps between the particles (Jolls & Hanratty 1966; Dybbs & Edwards 1984). Even in
steady flows, fluid elements undergo chaotic trajectories if the porous medium has a
random structure. If temporal fluctuations from finite-Reynolds-number instabilities
at the microscale give rise to periodic temporal fluctuations, these manifest as random
fluctuations at macroscopic scales, since the temporal fluctuations are most likely to
occur over a large volume and out of phase with one another. Therefore, when
attempting to visually identify turbulent flow in random porous media, care must
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be taken to determine the smallest length scale over which the apparently turbulent
dispersion occurs. Long-range coupling is unlikely, because hydrodynamic interactions
in random porous media are rapidly attenuated at separations larger than a few
particle diameters. In ordered porous media, long-range order can be broken by the
onset of unsteady flow (Hill & Koch 2002).

For steady flows in ordered and random arrays of spheres, the flow topology at
moderate Reynolds numbers depends very much on the sphere configuration (Hill,
Koch & Ladd 2001b). The dynamics of flows in three-dimensional geometries are
likely to be different from those in two-dimensional arrays (Ghaddar 1995; Koch
& Ladd 1997; Hill & Koch 2002) because, in addition to diffusion and convection
of vorticity, three-dimensional flows admit the production of vorticity by vortex
stretching. This enables kinetic energy at larger scales to be transferred to smaller
scales, producing small-scale dissipative structures. Such an energy cascade might be
used to distinguish low-Reynolds-number turbulence in porous media from unsteady
laminar flow.

Pointwise velocity measurements have been made in porous media composed of
ordered arrays of relatively large spherical particles. Mickley, Smith & Korchak
(1965) and van der Merwe & Gauvin (1971) used hot-wire anemometer probes to
measure turbulence statistics of flows in close-packed rhombohedral and simple-cubic
arrays of spheres, respectively. Interpreting these measurements is particularly difficult,
because the velocity fluctuations are anisotropic and their amplitude is comparable
to the mean velocity – turbulence intensities in the approximate range 0.2–0.5 were
reported. Consequently, the Taylor hypothesis is invalid and the spatial scales cannot
be measured accurately from time series obtained at a fixed position. Unfortunately,
comparisons of their results cannot be made with simulations, because the O(103)
Reynolds numbers considered are beyond the O(102) values accessible with present
computational resources.

Lebon et al. (1996) and Kutsovsky et al. (1996) have used nuclear magnetic reson-
ance (NMR) imaging to obtain probability distribution functions (PDFs) of the fluid
velocity in randomly packed beds of spheres. In these works, the Reynolds numbers
were sufficiently small for the flows to be steady, and the velocity PDFs were found to
decay exponentially at large positive velocities. When the abscissae were scaled with
the average velocity, the PDFs did not change significantly with increasing Reynolds
number, since at these small Reynolds numbers the flow topology is insensitive to
the Reynolds number (Hill et al. 2001b). The changes in flow topology that occur at
larger Reynolds numbers should significantly affect transport processes and statistical
characteristics of the velocity fields.

Recently, Reynolds, Reavell & Harral (2000) performed lattice-Boltzmann simu-
lations examining the dynamics of flows in a close-packed face-centred cubic array
of spheres, with the flow directed along the (1,1,1) direction of the array. They com-
pared simulations and experiments of tracer dispersion, and from their simulations
identified transitions from steady to periodic, quasi-periodic and chaotic dynamics
occurring at Reynolds numbers less than approximately 26. These transitions occur
at much lower Reynolds numbers than in this work where the flow is directed along
the (1,0,0) axis. As they point out, the difference can explained by considering the
different cross-sectional areas between the spheres in the flow direction.

In this work, the dynamics of moderate-Reynolds-number flows in a close-packed
face-centred cubic array of spheres are examined in detail. This geometry was chosen
because experiments could, in principle, be performed to compare with simulations.
Indeed, Wegner, Karabelas & Hanratty (1971) and Karabelas, Wegner & Hanratty
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(1973) have examined the flow close to the surfaces of the spheres in such a configur-
ation. They were particularly interested in the topology of the limiting streamlines and
the velocity gradient at the surfaces, since the flow there plays an important role in
heat and mass transfer. Away from the sphere surfaces, they noted that the streamlines
emerging from four lobes on the downstream faces of the spheres spiral outward from
their respective foci. Also of significance is the symmetry of the flow at the surface
of the spheres – only one eighth of the surface needed to be examined. Their work
focused on steady flows, partly because it is very difficult to observe the dispersion of
a dye tracer when the flow is unsteady. Nevertheless, they noted that the transition
to unsteady flow occurs at Reynolds numbers based on the sphere radius and the
average velocity in the range 45–60. Unfortunately, they did not speculate on why the
transitions to unsteady flow occurred over such a large range of Reynolds numbers.

The dynamics observed in an experiment, which necessarily has imperfections in
the geometry that, for example, could break symmetries of the otherwise ordered
microstructure, might be qualitatively different to those obtained from computations
or theory that enforce such symmetries exactly. Indeed, Lahbabi & Chang (1985)
studied the transition to unsteady flow in a close-packed simple cubic array of spheres,
when the average velocity is directed along the primary axis of symmetry. Instead of
solving the Navier–Stokes equations directly, they derived a low-dimensional model
by projecting the Navier–Stokes equations onto basis functions (with up to five
modes) that preserved many of the symmetries of the underlying geometry. While
they observed physically plausible dynamics – a sequence of period doubling leading
to chaotic flow – the dependence of the drag force on the Reynolds number was later
found to be inaccurate (Ladd 1994b).

An interesting question to address then is whether the dynamics can be accurately
reproduced when the symmetries imposed by the geometry are perturbed. In this
work, symmetries are broken by briefly perturbing the direction of the average
pressure gradient away from the axis of symmetry. The velocity field is not restricted
to a sub-domain of the cubic unit cell, but only by the triply periodic boundary
conditions. Consequently, symmetry breaking gives rise to quasi-periodic rather than
a period-doubling route to chaotic dynamics.

In the next section, the physical parameters and various statistics used to diagnose
the simulation results are described. This is followed by a discussion of the compu-
tational method and its limitations at the highest Reynolds numbers. Next, the results
are presented. These comprise bifurcation diagrams for the amplitude and frequency
of the fluctuations in the spatially averaged velocity, as well as the dependence of the
drag force on the Reynolds number. Time series, and their respective Fourier spectra,
of the streamwise and cross-stream components of the spatially averaged velocity
are examined to highlight the sequence of bifurcations that leads from steady to
unsteady chaotic flow. Also examined are two-dimensional projections of the velocity
field and a three-dimensional flow visualization. These, together with statistics of the
velocity, vorticity and helicity, are used to examine the spatial and temporal velocity
fluctuations, and to elucidate some geometrical characteristics of the flows at various
Reynolds numbers. Finally, a summary of the results is given.

2. Simulation methodology
The porous medium considered in this work is a close-packed face-centred cubic

array of impermeable spheres with a solid volume fraction

c = 16
3
π(a/L)2, (1)
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Figure 1. A projection of the close-packed face-centred cubic unit cell is shown within the outermost
square, with the flow directed along the x-axis (out of the page). The solid and dotted lines identify
spheres whose centres lie on planes whose unit normals are parallel to the x-axis, and the shaded
areas highlight two cubic sub-domains used to examine the flows in later sections.

where a is the sphere radius and L is the size of the cubic computational domain,
both measured in lattice units. In all the simulations considered in this work, the
computational domain encloses four spheres whose centres coincide with the eight
corners and the centres of the six faces of the triply periodic cubic domain.

Figure 1 shows the coordinate system and a projection of the unit cell onto the
(y, z)-plane. Clearly, within the unit cell, the geometry is invariant to rotations of
π/2 about the x-axis, and reflections about planes whose unit normals lie in the
(y, z)-plane and are perpendicular to the lines y = 0, z = 0 and y = ±z.

In this work, the applied body force is directed along the x-axis. This is convenient
for performing simulations, since the average pressure gradient does not have to be
obtained by trial-and-error to achieve a specified flow direction. It is also convenient
for experiments, since the cubic array easily fits into a rectangular channel, which
ensures that the spatially averaged velocity is directed along the primary axis of
symmetry at all Reynolds numbers. Note that, at finite Reynolds numbers, there are
no symmetries of the flow about any planes whose unit normals are parallel to the
x-axis.

The velocity is considered as the sum

u(x, t) = U (t) + u′(x, t), (2)

where the spatially averaged velocity U is equivalent to the so-called superficial
velocity measured in an experiment by dividing the volumetric flow rate by the cross-
sectional area of the containing vessel. The average velocity in the space occupied by
the fluid is simply U/(1− c).

The Reynolds number is defined as

Re = Ūxa/ν, (3)

where ν is the fluid kinematic viscosity and the overbar indicates the time average.
The dimensionless drag force on the spheres is defined as

F = |f̄|/(6πµa|Ū |), (4)

where µ is the fluid viscosity. Note that, since only one unit cell is considered, spatial
periodicity requires that the drag force on all four spheres in the computational
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domain be equal. Also, since the applied body force must balance the time-averaged
drag force, the time-averaged drag force on the spheres is known a priori. It follows
that, at steady state, the average drag force multiplied by the sphere number density
is equal to the average pressure gradient, and hence the magnitude of the average
pressure gradient is

|〈∇p〉| = 9µcF |Ū |/(2a2). (5)

Because flows with chaotic fluctuations have a statistical uncertainty coming from
the fluctuating spatially averaged velocity, the fundamental frequency, ω1, is non-
dimensionalized with the inverse of the viscous time scale, a2/ν, rather than the
convective time scale, a/|Ū |.

The amplitude of the fluctuations in the components of the spatially averaged
velocity are characterized by the standard deviations of the components of the
fluctuating spatially averaged velocity, non-dimensionalized with ν/a to give Reynolds
numbers,

Ai = U ′iU ′i
1/2
a/ν (i = x, y, z), (6)

where U ′i = Ui − Ūi. The fluctuations in the streamwise and cross-stream directions
will be referred to as

A‖ = Ax and A⊥ = (Ay + Az)/2, (7)

respectively, since the y- and z-directions cannot, in general, be distinguished from
one another, although in some cases this symmetry may be broken. Note that the
amplitude of a sinusoidal oscillation with the same average fluctuating kinetic energy
is
√

2 times larger than its standard deviation.

3. Computational checks
The pressure and fluid velocity are computed using the lattice-Boltzmann method of

Ladd (1994a, b), which approximates solutions of the incompressible Navier–Stokes
equations, with the no-slip boundary condition at the solid surfaces and periodic
boundary conditions at the bounds of the computational domain. In addition to
ensuring adequate spatial and temporal resolution, care must be taken when using
the lattice-Boltzmann method to ensure that the velocity fields are not adversely
affected by the fluid’s compressibility (Hill & Koch 2002). This section quantitatively
compares simulations with various grid resolutions and then addresses the effects of
fluid compressibility.

To examine the effect of the grid resolution on the dynamics of the flows, simulations
were performed with sphere radii of 19.8, 31.8 and 48.8 lattice units. The simulations
with the largest sphere radius of 48.8 lattice units had 1383 lattice nodes and were
advanced by up to approximately 5 × 105 time steps. Table 1 compares various
statistics obtained from these simulations at Reynolds numbers in the range where
the flow undergoes transitions from periodic to chaotic dynamics and, hence, are most
sensitive to the grid resolution. The simulations with similar Reynolds numbers, but
with different sphere radii, have the same drag force, and hence the difference in the
average velocities is because of the different grid resolutions and the slightly different
solid volume fractions. The time series from which these statistics were obtained, and
details of the dynamics, may be found in the thesis of Hill (2001).

As with previously published results for steady flows (Maier et al. 1998; Hill et al.
2001b), the non-dimensional drag force on the spheres is not very sensitive to the
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a c 4f Re F A‖ A⊥ ω1ν/a
2 s/p/q/c

19.8 0.741 5000 37.0 747 0 0 ∞ s
60001 42.2 786 0.585 0 103 p
70001 46.8 825 0.604 0 111 p
90002 (53.7) 53.8 (926) 924 0.0190 0 433 p

11 0003 (60.8) 60.9 (1000) 998 0.0489 — 478 p
13 0004 — — — — — —

31.8 0.739 7000 (45.0) 45.8 (860) 845 0.563 0 116 p
9000 (52.6) 53.4 (946) 931 0.505 0.138 116 q

11 000 (59.5) 59.2 (1020) 1030 0.299 0 212 p
13 000 (65.9) 65.5 (1090) 1100 0.386 0.232 230 c

48.8 0.741 70005 45.7 847 0.699 0 122 p
9000 (51.9) 53.1 (959) 936 0.622 0.319 135 c

11 000 (58.8) 59.5 (1030) 1030 0.481 0.464 135 c
13 000 (65.2) 65.0 (1100) 1110 0.448 0.367 229 c

Table 1. Comparison of simulations with grid resolutions corresponding to sphere radii of 19.8,
31.8 and 48.8 lattice units. In the range of Reynolds numbers considered here, the dynamics are the
most difficult to capture accurately at long times because of the transition from periodic to chaotic
flow. The results in brackets refer to the quasi-steady state that is typically approached before the
growth of unstable modes if the fluid is accelerated from rest. Steady, periodic, quasi-periodic and
chaotic states are denoted by the letters s, p, q and c respectively. 1A quasi-steady solution was
not approached. 2Unphysical long-time behaviour. 3Unbounded growth at long time. 4Unbounded
growth at short time. 5Non-zero initial condition.

grid resolution, even in cases where the dynamics at long times are qualitatively
different. In the range of Reynolds numbers where the flow undergoes a transition
from periodic to chaotic behaviour, grid-independent dynamics are more difficult
to capture. Nevertheless, the amplitudes and frequencies of the time series outside
this range are in reasonable agreement. Unfortunately, a more comprehensive study
that quantifies the effects of changing the grid resolution on the various statistics
is beyond our computational resources. Most quantitative results presented in the
following sections are from simulations with the largest sphere radius of 48.8 lattice
units. While the results of simulations with a smaller sphere radius of 31.8 lattice
units are usually in reasonable quantitative agreement, they are used more often for
qualitative comparisons, such as flow visualization.

The local Mach number for the simulations with the largest Reynolds numbers
may be high enough for the fluid’s compressibility (which is not modelled exactly
by this lattice-Boltzmann formulation) to adversely affect the results. Because the
computational cost is approximately proportional to a5, and our goal is to perform
a parametric study, simulations with smaller Mach numbers – achieved by using
even finer grids, for example – are beyond present resources. Nevertheless, to give a
conservative indication of the Reynolds numbers above which compressibility artifacts
may be expected, the maximum fluid velocity can be estimated from the velocity
variances given in § 8. These suggest that the variance of the streamwise velocity
fluctuations are at most R‖ = 0.52 times the square of the average fluid velocity inside
the domain occupied by the fluid. Estimating the maximum velocity to be the mean
plus four standard deviations gives a Mach number M = (1+4

√
R‖)Re ν/(acs(1− c)).

For M < 0.2, this requires Re < 30 for a = 31.8 lattice units, and Re < 46 for
a = 48.8 lattice units. Clearly, the maximum Mach number based on these estimates
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increases in proportion to the Reynolds number. At the largest Reynolds number
of approximately 110, for example, the maximum Mach number for a = 48.8 lattice
units is approximately 0.48. Unfortunately, the extent to which a Mach number of
this size – in a very small region of the domain – affects the flows is beyond the scope
and, indeed, the computational resources of this work, but, nevertheless, will be an
important issue to address in future studies with higher grid resolutions and, hence,
lower Mach numbers.

Regarding pressure wave oscillations, we note that the frequency of sound waves
traversing the computational domain, whose length L is 90 lattice units, at the sound
speed is approximately ω = cs/L = 0.0079. In this work, the fluid kinematic viscosity,
ν, and the sound speed, cs, scaled with the lattice-node separation and time step, are
0.01 and 1/

√
2, respectively. With a sphere radius of 31.8 lattice units, the dimen-

sionless frequency, ωa2/ν, is 795. This is much higher than those of the underlying
fluid velocity fluctuations, which are in the range 80–150 at Reynolds numbers in
the range 30–60 (see figure 3). Clearly, the separation in time scales, between the
underlying velocity fluctuations and the time for sound waves to propagate across
the domain, makes it unlikely that the dynamics are dominated by those of spurious
pressure oscillations. Furthermore, another test for the effect of sound waves on the
dynamics is to vary the sphere radius and, hence, the size of the computational
domain. As above, if we suppose that the frequency corresponding to sound waves
traversing the computational domain is O(cs/L), then the non-dimensional frequency
is O(csa

2/(νL)), which is is proportional to a when the solid volume fraction and other
variables are fixed. However, as shown in table 1, more than doubling the sphere
radius, from 19.8 to 48.8 lattice units, increases the non-dimensional fundamental
frequency of the periodic fluctuations, at a Reynolds number of approximately 45, by
less than 10%. Again, the dynamics are suggested to be dominated by those of the
underlying incompressible fluid.

4. Bifurcations
In this section, the dependence upon the Reynolds number of: (i) the standard

deviations of the fluctuating components of the spatially averaged velocity; (ii) the
fundamental frequency of the fluctuating streamwise component of the spatially aver-
aged velocity; and (iii) the time-averaged non-dimensional drag force are examined.
These quantities help to characterize the underlying dynamics of the flows and the
transitions that occur with increasing Reynolds number. Before presenting results that
characterize the long-time behaviour, the initial transient is discussed briefly, since in
many cases the long-time dynamics take a deceptively long time to fully develop.

If the fluid is first accelerated from rest by a constant average pressure gradient,
the spatially averaged velocity undergoes a rapid transient, with a duration of less
than approximately 0.025a2/ν, causing it to briefly overshoot its long-time average
value. If the Reynolds number is sufficiently large, the spatially averaged velocity
typically relaxes to a quasi-steady or unstable steady state before developing temporal
fluctuations at a later time. The development of these fluctuations is typically initiated
by the growth of a mode that perturbs the cross-stream components of the spatially
averaged velocity. At smaller Reynolds numbers, the spatially averaged velocity
eventually develops periodic temporal fluctuations in only the streamwise component,
whereas at larger Reynolds numbers, all three components fluctuate chaotically.

The time it takes for the long-time dynamics to develop decreases with increasing
Reynolds number. At Reynolds numbers close to the critical value, Rec, it takes



66 R. J. Hill and D. L. Koch

an O(σ−1
1 ) time for the linearly unstable modes to fully develop from the steady

base state, and hence it is impractical to examine the transition to unsteady flow by
performing simulations with an initially stationary fluid. Here, σ1, which approaches
zero as the Reynolds number approaches Rec from above, is the real part of the
eigenvalue of the most unstable mode. To examine the Hopf bifurcation in detail, and
hence to determine Rec precisely, simulations were performed with initial velocity fields
obtained from simulations with fully developed unsteady flows. At Reynolds numbers
very close to Rec, the mean and amplitude of the sinusoidally oscillating streamwise
component of the spatially averaged velocity decayed exponentially toward their
steady-state values, irrespective of the initial conditions. In such cases, the steady-state
values could be obtained very accurately by fitting exponentially decaying functions
to the time series over relatively short times. The frequency of the fluctuations during
the transient period remained constant, as might be expected in the small range of
Reynolds numbers where the dynamics are weakly nonlinear.

Simulations with a sphere radius of 48.8 lattice units were performed after examin-
ing the bifurcation diagrams obtained from simulations with a sphere radius of 31.8
lattice units. The results were similar, except in the intermediate range of Reynolds
numbers where temporal fluctuations in the cross-stream components of the spatially
averaged velocity develop. In this range of Reynolds numbers, the multiple solutions
and hysteresis observed with a sphere radius of 31.8 lattice units ceased to exist with
an increase in the grid resolution. Instead, the onset of temporal fluctuations in the
cross-stream components of the average velocity was accompanied by a transition
to quasi-periodic flow followed by the development of chaotic fluctuations at larger
Reynolds numbers. As shown below, these bifurcations can be partially identified
from the dependence of the amplitude of the fluctuating components of the spatially
averaged velocity on the Reynolds number.

4.1. Amplitude of the fluctuating spatially averaged velocity

Figure 2 shows the dependence of A‖ and A⊥ on the Reynolds number obtained
from simulations with a sphere radius of 48.8 lattice units. At a Reynolds number
of approximately 30, the streamwise component of the spatially averaged velocity
begins to oscillate sinusoidally with an amplitude of

√
2A‖. The cross-stream com-

ponents of the spatially averaged velocity begin to fluctuate at a Reynolds number
of approximately 45. With increasing Reynolds number, the increasing amplitude
of the fluctuating cross-stream components is accompanied by a decrease in the
amplitude of the streamwise component. At Reynolds numbers in the approximate
range 50–70, the amplitude of the fluctuations in all the components of the spatially
averaged velocity are approximately equal. With a further increase in the Reynolds
number, the amplitudes all increase at approximately the same rate. These fluctuations
are chaotic, and the fluctuating kinetic energy is approximately equally partitioned
amongst the streamwise and cross-stream directions. The dynamics of the spatially
averaged velocity are coupled to the small-scale velocity fluctuations whose topology
and statistics will be examined in following sections.

The simulation results at Reynolds numbers less than approximately 45 are given
to a good approximation by the fit

A‖ = 1.33(Re/26.1− 1)1/2 − 0.418 (28.7 < Re < 45), (8)

which gives a critical Reynolds number of approximately 28.7. The amplitude does
not increase with the square root of a small parameter ε = Re/Rec−1. This is possibly
related to the symmetry of the unstable base state from which the small-amplitude
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Figure 2. The characteristic amplitude of the streamwise (circles) and cross-stream (squares)
components of the fluctuating spatially averaged velocity, non-dimensionalized with ν/a, as a
function of the Reynolds number. These results are from lattice-Boltzmann simulations with
(a, c) = (48.8, 0.741), where a is in lattice units. The line is a fit to the simulation results given by (8).

temporal fluctuations develop, and to the symmetries broken by the topological
change that occurs with the onset of temporal fluctuations. If all the symmetries
of the steady flow were forced upon the unsteady flow, then this might cause the
constant on the right-hand side of (8) to vanish, which would give the square-root
scaling typically expected for a supercritical Hopf bifurcation. The discontinuous
changes in the rate at which A‖ and A⊥ increase with the Reynolds number, when
Re > 45, can be attributed to further bifurcations, as will be seen when we examine
the Fourier spectra of the time series.

4.2. Frequency of the fluctuating spatially averaged velocity

At Reynolds numbers between the critical Reynolds number and the Reynolds
number where there first appear fluctuations in the cross-stream components of the
spatially averaged velocity, there is an easily identified fundamental frequency in the
time series of A‖, which appears as an easily identified peak in the Fourier spectra.
Figure 3 shows how the fundamental frequency increases with the Reynolds number
over the range of Reynolds numbers where a fundamental frequency can be easily
identified. Using the critical Reynolds number obtained from (8), the simulation
results are given to a good approximation by the fit

ω1a
2/ν = 80.4 + 74.7(Re/28.7− 1)− 8.94(Re/28.7− 1)2 (28.7 < Re < 45). (9)

At the critical Reynolds number, the Strouhal number is ωca
2/(νRec) = 80.4/28.7 =

2.80. In an experiment with water as the fluid, and with spheres whose radius
is 2 cm, the frequency at the critical Reynolds number would be approximately
80.4ν/a2 = 0.2 Hz. At larger Reynolds numbers, there are an increasing number of
commensurate and incommensurate frequencies that appear in the Fourier spectra.

4.3. Drag force

Figure 4 shows the dependence of the non-dimensional drag force on the Reynolds
number. At Reynolds numbers beyond the small range where the inertial correction
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Figure 3. The fundamental frequency of the streamwise component of the fluctuating spatially
averaged velocity, non-dimensionalized with ν/a2, as a function of the Reynolds number. These
results are from lattice-Boltzmann simulations with (a, c) = (48.8, 0.741). The line is a fit to the
simulation results given by (9).
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Figure 4. The non-dimensional drag force as a function of the Reynolds number from lattice-
Boltzmann simulations with (a, c) = (48.8, 0.741). The dotted and solid lines are linear fits to the
simulation results, given by (10) and (11), respectively.

to F(Re = 0) is actually proportional to Re2 (Hill, Koch & Ladd 2001a), F increases
approximately linearly with Re. The dotted and solid lines shown in figure 4 are the fits

F = 365 + 10.9Re (10 < Re < 80), (10)

and

F = 462 + 9.85Re (Re > 80), (11)

respectively.
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Although (11) was fitted to the simulation results with Re > 80, it provides an
excellent approximation for Re > 60. At smaller Reynolds numbers, the drag force
does not increase exactly linearly with Re, because the flow topology changes as the
flow undergoes the transition from steady to chaotic dynamics. Nevertheless, (10)
provides a reasonable approximation to the data at Reynolds numbers where the
dynamics are not yet ‘fully developed’, i.e. the time-averaged flow topology is not
self-similar with increasing Reynolds number.

5. Dynamics of the spatially averaged velocity
The time series of the streamwise and cross-stream components of the spatially

averaged velocity are shown in figures 5 and 6, respectively. These illustrate the
qualitative changes that occur with the transition from periodic to chaotic dynamics.
The components of the spatially averaged velocity are non-dimensionalized to give
Reynolds numbers

Rei = Uia/ν (i = x, y, z). (12)

The non-dimensional frequency corresponding to the sampling rate of the time series
is approximately 4800, and hence, over the frequency ranges shown here, the accuracy
of the spectra shown in figure 7 is limited by the time over which the time series were
obtained. Nevertheless, the length of the time series was usually sufficiently long to
resolve frequencies down to 10ν/a2.

In general, at smaller Reynolds numbers, the fluctuations in the cross-stream
components of the spatially averaged velocity are sufficiently small that they do not
affect those in the streamwise direction. Compare, for example, the time series of the
streamwise component of the spatially averaged velocities in figure 5(a–c) with the
respective time series of the cross-stream components in figure 6. At larger Reynolds
numbers, the fluctuating streamwise component of the spatially averaged velocity is
influenced much more by the cross-stream components. This gives rise to relatively
small-amplitude high-frequency fluctuations superposed on relatively large-amplitude
low-frequency streamwise fluctuations. Compare, for example, the time series of the
streamwise component of the spatially averaged velocity in figure 5(e) with the
respective time series of the cross-stream components in figure 6.

Figure 5(a) shows the relaxation of the spatially averaged velocity from a simulation
whose initial velocity field was obtained from a simulation with a fully developed
unsteady flow at a larger Reynolds number. The flow rapidly develops approximately
sinusoidal fluctuations in the streamwise component of the spatially averaged velocity.
As shown in figure 6(a), the cross-stream components decay so there remain only
fluctuations in the streamwise component at long times, which is also the case at
smaller Reynolds numbers. Although they are not shown, the Fourier spectra of the
fluctuating streamwise component of the spatially averaged velocity have peaks at
the fundamental frequency, ω1, and its higher frequency harmonics, nω1 (n = 2, 3, . . .).

Figure 5(b) shows the development of the quasi-periodic dynamics that occurs when
the cross-stream components of the spatially averaged velocity first begin to fluctuate.
The amplitude of the cross-stream components shown in figure 6(b) are modulated
with the same low frequency as the streamwise component. The Fourier spectra of the
streamwise and cross-stream components of the spatially averaged velocity are shown
in figures 7(a) and 7(b), respectively. The streamwise component has a fundamental
frequency of ω1 ∼ 130ν/a2 and two higher frequency harmonics, 2ω1 and 3ω1. The
cross-stream components have peaks in the spectra at frequencies that are, to the
resolution achieved here, incommensurate with those of the streamwise component.
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Figure 5. Time series of the x- (streamwise) component of the spatially averaged velocity,
non-dimensionalized with ν/a to give Reynolds numbers, from lattice-Boltzmann simulations with
(a, c) = (48.8, 0.741), where a is in lattice units. Time series of the corresponding cross-stream
components are shown in figure 6. (a) Re = 45.7, (b) 49.5, (c) 51.3, (d ) 53.1, (e) 82.4, ( f ) 106.2.

The ‘satellite’ peaks give rise to the amplitude modulation. It is interesting to note
that the dynamics of the y- and z-components of the spatially averaged velocity are
not the same, indicating a breaking of symmetry.

The Fourier spectra in figure 7 show that the route to chaos occurs via a transition
to flow on a three-torus, rather than period-doubling as for two-dimensional ordered
arrays of aligned cylinders (Koch & Ladd 1997; Hill & Koch 2002). At a Reynolds
number of 49.5, the peaks in the Fourier spectra occur at frequencies that can be
obtained from linear combinations of three fundamental frequencies, ω1 = 130ν/a2,
ω2 = 4.81ν/a2 and ω3 = 2.52ν/a2. The peaks in the spectra for the x- and z-
components of the spatially averaged velocity occur at frequencies given by (mω1 ±
nω2), where m and n are positive integers. Those of the y-component occur at the
same frequencies as the x- and z-components, but with a shift of ω3 to slightly higher
frequencies. The amplitudes of the peaks at these frequencies for each component
are very different because of the breaking of symmetry in the (y, z)-plane. The
fundamental frequency ω1 dominates the fluctuating streamwise component of the
spatially averaged velocity, whereas the frequencies ω2 and ω3 give rise to the
modulated amplitude seen in figure 6(b).

The almost-periodic dynamics that occur at a Reynolds number of 49.5 give way
to chaotic dynamics at an only slightly larger Reynolds number of 51.3. This is
demonstrated by the continuous spectra shown in figure 7(b) and the time series
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Figure 6. Time series of the y- (solid) and z- (dotted) components of the spatially averaged velocity,
non-dimensionalized with ν/a to give Reynolds numbers, from lattice-Boltzmann simulations with
(a, c) = (48.8, 0.741), where a is in lattice units. Time series of the corresponding streamwise
components are shown in figure 5. (a) Re = 45.7, (b) 49.5, (c) 51.3, (d ) 53.1, (e) 82.4, ( f ) 106.2.

shown in figures 5(c) and 6(c), for example. The transition to chaotic dynamics is
accompanied by the time-averaged flow regaining the symmetry that was broken in
the quasi-periodic regime at a Reynolds number of 49.5. With increasing Reynolds
number, the density of distinct frequencies in both the streamwise and cross-stream
directions increases considerably. At the largest Reynolds numbers considered, the
peaks in the spectra are sufficiently numerous that they cannot be unambiguously
distinguished from one another.

Despite the different times over which they are shown, the time series in figures 5(d )
and 6(d ) for a Reynolds number of 53.1 are qualitatively similar to those at a Reynolds
number of 51.3. Also shown is the quasi-steady state that precedes the transition to
chaotic unsteady flow. Although the dynamics appear to be evolving on a relatively
long time scale, continuing this simulation to much longer times did not change the
behaviour seen here. In all the simulations performed in this work, there was no evi-
dence of intermittent transitions between chaotic and quasi-periodic or periodic flow.

Figures 5(e) and 5( f ) show time series at Reynolds numbers where the Fourier
spectra are continuous and their dominant peaks have broadened considerably. In
both cases, the time series of the streamwise components have relatively small-
amplitude high-frequency fluctuations superposed on relatively large-amplitude low-
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Figure 7. Fourier spectra of time series of the fluctuating streamwise (solid) and cross-stream
(dotted) components of the spatially averaged velocity, non-dimensionalized with ν/a to give
Reynolds numbers, from lattice-Boltzmann simulations with (c, a) = (48.8, 0.741), where a is in
lattice units. (a) Re = 49.5, (b) 53.1, (c) 59.5, (d ) 82.4.

frequency fluctuations. The time series of the cross-stream components shown in
figures 6(e) and 6( f ) suggest that the high-frequency contributions to the streamwise
components come from a much stronger interaction with the cross-stream components
than at smaller Reynolds numbers. Indeed, as was shown in figure 2, the amplitudes
of the streamwise and cross-stream components of the spatially averaged velocity are
comparable at these Reynolds numbers.

The Fourier spectra of all the components of the spatially averaged velocity shown
in figures 7(c) and 7(d ) have a continuous distribution of frequencies. The distinct
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Figure 8. Projections of the spatially averaged velocity, non-dimensionalized with ν/a to give
Reynolds numbers, onto the (z, y)-, (y, x)- and (z, x)-planes. The points along the trajectories are
separated by 50 time steps of a lattice-Boltzmann simulation with (a, c) = (48.8, 0.741), where a is
in lattice units.

peaks in the spectra of the streamwise component of the spatially averaged velocity
at smaller Reynolds numbers have decreased in magnitude and broadened because
the fluctuating kinetic energy is distributed amongst a larger number of modes.
The dominant peaks in the spectra of the cross-stream components of the spatially
averaged velocity have decreased in amplitude. At the largest Reynolds number, the
fluctuating kinetic energy is distributed over a relatively wide range of frequencies. It
is interesting to note that the qualitative differences between the spectra at these two
Reynolds numbers could, perhaps, be attributed to one of the bifurcations suggested
in § 4.1 to give rise to the discontinuous change in the rates at which A‖ and A⊥
increase with Re at Reynolds numbers between 80 and 90 (see figure 2).

Figure 8 shows projections of quasi-periodic trajectories, in the phase space of
the spatially averaged velocity, onto the (y, z)-, (x, y)- and (x, z)-planes in the cor-
responding velocity space. The manifold occupied by the trajectories clearly has a
complicated structure, which is characterized by regular bursts in the amplitude of
the cross-stream components. These, of course, can be easily identified in the time
series shown in figures 5(b) and 6(b).
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(a)

(b)

Figure 9. Projections of the fluid velocity onto the (y, z)- and (x, y)-planes. Only a subsection of the
entire cross-sections are shown, since most of the region outside the views is occupied by the spheres.
These results are from a lattice-Boltzmann simulation with (Re, a, L, 4f) = (25.9, 31.8, 90, 3000), where
a is in lattice units. At this Reynolds number, the flow is steady and has the same reflectional and
rotational symmetries in the (y, z)-plane as the underlying geometry. The spatially averaged velocity
in (a) is out of the page, whereas in (b) it is from left to right.

With increasing Reynolds number, the amplitude of the fluctuations in the cross-
stream components of the spatially averaged velocity increase, and there develops a
stronger coupling between the streamwise and cross-stream components. This coupling
leads to the chaotic behaviour observed at larger Reynolds numbers, as can be seen
in figure 6(c–f ), for example. When the dynamics become chaotic, the trajectories
fill the entire space whose fluctuating kinetic energy is bounded by a constant that
increases with the Reynolds number.

6. Flow topologies
While the spatially averaged velocity provides a useful quantitative means of inter-

preting the dynamics, averaging conceals many details. In this section, the topologies
of the velocity fields are examined to highlight the symmetries of the flows at various
Reynolds numbers, and to elucidate a mechanism for the self-sustained dynamics.

6.1. Steady flow

Figure 9 shows projections of the fluid velocity onto the (y, z)- and (x, y)-planes at a
Reynolds number just below the critical value of 28.7. This is the steady base state from
which unstable modes develop at larger Reynolds numbers. Clearly, the projection
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of the velocity field in (a) has the same reflectional and rotational symmetries in the
(y, z)-plane as the close-packed sphere configuration. A region of backward flowing
fluid at the rear of the spheres and a region of slowly moving but non-recirculating
flow at their upstream faces can be identified in figure 9(b). Together, the projections
in (a) and (b) show that the steady base state could be computed using a sub-domain,
with a triangular cross-section, whose volume is only 1/8th of the entire cubic domain.
However, for the unsteady flows examined below, the flow rotates around the x-axis,
and hence the entire computational domain is necessary.

It is interesting to note here the observations of Wegner et al. (1971), who performed
experiments in which a dye tracer was released from various positions on the surface of
a sphere embedded in such an array. They identified eight so-called focal points in the
pattern of limiting streamlines on the downstream faces of the spheres. Also noted
and photographed were eight helical trajectories issuing into the bulk flow. These
observations provide convincing evidence that the simulations capture the correct
flow topology, since there are, indeed, two rotating regions in each of the four corners
of the projections shown in figure 9(a). These are presumably the cross-sections of
eight vortex-like structures whose axes are aligned in the streamwise direction. The
region of backward moving fluid at the downstream faces of the spheres shown in
figure 9(b) is part of a recirculating flow that is similar to the annular vortex that
forms in the wake of a single sphere in an unbounded fluid at moderate Reynolds
numbers. However, in this flow it is considerably shorter and is partitioned into at
least four, but possibly eight, sub-domains.

For comparison, figure 10 shows similar projections of the velocity field from a
simulation with a Reynolds number of 106 and a sphere radius of 48.8 lattice units.
This is the largest Reynolds number that was achieved in this work. While the
chaotically fluctuating flow is significantly distorted from the steady base state shown
above, similar large-scale features can still be identified.

6.2. Periodically fluctuating flow

With the onset of unsteady flow, the projection of the velocity field onto the (y, z)-plane
loses its reflectional symmetry about the lines y = ±z, but maintains its invariance to
rotations of π/2 about the x-axis. This primary instability is followed by a secondary
instability at larger Reynolds numbers that breaks all the symmetries of the flow in
the (y, z)-plane, giving rise to quasi-periodic dynamics.

Periodic fluctuations in the spatially averaged velocity occur only in the streamwise
direction. Based on only this information, one might be led to assume that the velocity
field maintains the symmetries imposed by the geometry of the array. If this were
the case, the fluid would pulse back-and-forward, similar to an axisymmetric mode of
oscillation for a single sphere in an unbounded fluid. However, the projections of the
velocity fields shown in figures 11 and 13 suggest that this is not the case. Instead, the
fluid flowing along the x-axis alternates between clockwise and anticlockwise rotation
around the x-axis.

The illustrations in figure 12 show a schematic of the flow projected onto the (y, z)-
plane. Figure 12(a) highlights the symmetries of the steady base state from which
periodic fluctuations develop. The sequence (b–d ) illustrates the dynamics that occur
during a fundamental period. The steady base state shown in (a) is perturbed by the
generation of a vortex whose axis coincides with the x-axis. In this case, the vortex
is shown, arbitrarily, with a clockwise rotation corresponding to positive vorticity.
Note that the four pairs of vortices that exist in the steady base state are maintained
by the inertia and viscous stresses generated by the ‘jets’ of fluid issuing from the
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(a)

(b)

Figure 10. Projections of the fluid velocity onto the (y, z)- and (x, y)-planes. Only a small section of
the cross-sections are shown, since most of the region outside the views is occupied by the spheres.
These results are from a lattice-Boltzmann simulation with (Re, a, L, 4f) = (106, 48.8, 138, 29 000),
where a is in lattice units. At this Reynolds number, the flow fluctuates chaotically and all the
symmetries that were present at much smaller Reynolds numbers are broken. The spatially averaged
velocity in (a) is out of the page, whereas in (b) it is from left to right.

four corners of the domain. These vortices persist throughout the cycle and play an
important role in sustaining the unsteady motion.

One vortex in each of the four pairs, whose rotation is opposite to that of the
vortex in the centre, is attracted toward the centre. The attraction can be rationalized
by considering the interaction of a stationary line vortex with the velocity disturbance
induced by the other vortex in the counter-rotating pair. In this scenario, the force on
the fluid comes from the vortex term in the Navier–Stokes equations, u×ω (Tennekes
& Lumley 1994), which in this flow gives rise to an attraction of counter-rotating
vortices. Consequently, the four vortices are swept toward the central vortex where
they merge and coalesce under the influence of viscosity. After coalescing, the net
rotation of the fluid is the same as at the beginning of the cycle, but its direction is
reversed.

The projections of the velocity field onto the (x, y)-plane in figure 13 show that
the periodic fluctuations are more subtle than at larger Reynolds numbers when all
the components of the spatially averaged velocity fluctuate chaotically. The most
significant change in the velocity fields can be seen by comparing the velocity vectors
in the 5th and 8th images, for example. In the 5th image, the velocity is predominantly
in the streamwise direction, whereas in the 8th image, the velocity in the top (bottom)
half is predominantly upward (downward). These indicate that, similarly to the axial
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Figure 11. Projections of the fluid velocity onto the (y, z)-plane at equally spaced instants in
time increasing from left to right and from top to bottom. Only a small subsection of the entire
cross-section is shown, since most of the region outside the views is occupied by the spheres. In this
figure, the spatially averaged velocity is directed out of the page and fluctuates periodically with
a non-dimensional fundamental frequency ω1 = 122ν/a2. These results are from lattice-Boltzmann
simulations with (Re, a, c) = (47.7, 31.8, 0.739), where a is in lattice units, and the time between each
snapshot of the flow, ∆t, corresponds to ∆tν/a2 = 9.89× 10−4.

compression and expansion of an elastic spring, the instantaneously helical streamlines
undergo a cycle of contraction and expansion throughout the fundamental period.

6.3. Chaotically fluctuating flow

Figures 14–16 show a sequence of projections of the velocity field onto planes
passing through the centre of the computational domain, at a Reynolds number
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(a) (b)

(c) (d )

Figure 12. A schematic illustration of the mechanism for the symmetry-breaking instability that
gives rise to periodic temporal velocity fluctuations. This sequence may be compared to the
projections of the velocity field shown in figures 11 and 13. The plus and minus signs indicate the
direction of rotation within the vortices identified with circles. The base state of the steady flow (a)
(see figure 9) has no net rotation because of the invariance of the flow to rotations of π/2 about
the x-axis. A perturbation giving rise to net rotation about the x-axis leads to an attractive force
between vortices with opposite rotation (b). Merging and then coalescing (c) leads to a reversal of
the net rotation about the x-axis (d ).

where the spatially averaged velocity undergoes chaotic fluctuations. In contrast to
the velocity fields shown in figures 13 and 11, whose streamwise component of
the spatially averaged velocity fluctuates periodically, all symmetries are broken.
Consequently, projections onto the (x, y)- and (x, z)-planes are shown in figures 15
and 16, respectively.

The axes of a pair of counter-rotating vortices attached to the upstream faces
of the spheres can be seen to alternately align with the y- and z-axes. Because the
geometry is invariant to rotations of π/2 about the x-axis, there is no reason for one
orientation to be favoured over another. However, there must be sufficient energy to
alternate between the two states. Recall that the quasi-periodic dynamics observed at
a Reynolds number of 49.5 arbitrarily adopted one direction over the other, whereas
at larger Reynolds numbers the time-averaged chaotic flow regains the previously
broken symmetry, because the fluctuating cross-stream components of the velocity
are sufficiently energetic.

The three-dimensional visualization in figure 17 highlights some of the vortical
structures in the flow, particularly the pair of vortices that develops close to the
upstream surface of the spheres, i.e. behind the sphere whose upstream facing surface
is closest to the front of the sub-domains shown here (see figure 1). The ‘ribbons’
show trajectories in the instantaneous velocity fields; the light and dark trajectories
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Figure 13. Projections of the same velocity fields shown in figure 11, but onto the (x, y)-plane.

are intended to help distinguish nearby trajectories. Iso-contours of the vorticity and
velocity are shown by the light and dark surfaces, respectively. The magnitude of
the vorticity or velocity on these surfaces is equal to its mean plus 1.75 times its
standard deviation on the sub-domain shown. Clearly, the spaces occupied by helical
streamlines often coincide with regions bounded by the surfaces of high vorticity.
Furthermore, the highest velocities occur in the narrow gaps between the spheres,
which are close to the corners of the cubic sub-domain shown here.

A mechanism for the evolution of the counter-rotating pairs of vortices is elusive,
but one possibility is that they originate from an instability of the streamwise vortices
characterizing the periodically fluctuating flows. Such an instability can be rationalized
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Figure 14. Projections of the fluid velocity onto the (y, z)-plane at equally spaced instants in time
increasing from left to right and from top to bottom. Only a subsection of the entire cross-section
is shown, since most of the region outside the views is occupied by the spheres. In this figure, the
spatially averaged velocity is directed out of the page and fluctuates chaotically. These results are
from lattice-Boltzmann simulations with (Re, a, c) = (82.4, 31.8, 0.739), where a is in lattice units,
and the time between each snapshot of the flow, ∆t, corresponds to ∆tν/a2 = 4.94× 10−4.

by considering a line vortex whose axis is aligned with the flow direction. In the
absence of viscous stresses, any perturbation from a straight line leads to the growth
of three-dimensional disturbances because of the force coming from the vortex term,
u× ω, in the Navier–Stokes equations (Tennekes & Lumley 1994). The stretching of
the vortex line that necessarily accompanies such a perturbation will intensify the
vorticity, because of the stretching term, ω ·∇u, in the vorticity conservation equation,
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Figure 15. Projections of the same velocity fields shown in figure 14, but onto the (x, y)-plane.

and further increase the destabilizing force. A similar mechanism is known to produce
omega-shaped vortices in turbulent boundary layers (Hinze 1987). The stretching of
the vortices originally parallel to the flow would then be followed by rotation and
convection downstream, possibly assisted by the large fluctuations in the velocity that
cause streamlines originating from one quadrant to exit at another.

7. Spatial and temporal velocity fluctuations
In this section, the spatial velocity variance and its temporal evolution are used to

quantitatively examine the spatial and temporal velocity fluctuations. This analysis
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Figure 16. Projections of the same velocity fields shown in figure 14, but onto the (x, z)-plane.

shows that the temporal velocity fluctuations are significantly larger than those of the
spatially averaged velocity. The temporal evolution of the spatial velocity variance, at
Reynolds numbers where the dynamics are periodic, reveal the origin of the higher
frequency harmonics in the Fourier spectra of the spatially averaged velocity. This
analysis also shows how kinetic energy is exchanged between the fluctuating spatially
averaged velocity and the fluctuating spatial velocity variance.

The spatial velocity variance, non-dimensionalized with the magnitude of the spa-
tially averaged velocity, is defined as

R(t) = 〈u′u′〉/|U |2, (13)
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Figure 17. Trajectories in the velocity field, in the cubic sub-domain (see figure 1) whose sides
are tangent to spheres at each face, at an instant in time coinciding with the third image in
the sequence of projections of the velocity field shown in figures 14–16. The ‘ribbons’ highlight
the vortical structures that evolve in the flow – they follow trajectories in the ‘frozen’ velocity
fields. The dark and light surfaces are iso-contours of the magnitude of the velocity and vorticity,
respectively. The views are off the (y, z)-plane, with the spatially averaged velocity directed out of the
page.

where the angled brackets indicate the spatial average, which includes the space
occupied by the spheres. The non-dimensional variance of the streamwise and cross-
stream components of the velocity are given by the diagonal components of R , which
will be referred to as

R‖ = Rxx and R⊥ = (Ryy + Rzz)/2, (14)

respectively.
It is convenient to define characteristic velocities for the temporal velocity fluctua-

tions in the streamwise and cross-stream directions by

V 2
‖ = 2(E‖ − E‖)2

1/2

and V 2
⊥ = 2(E⊥ − E⊥)2

1/2

, (15)

respectively, where the overbars again indicate time averages and

E‖ = 1
2
|U |2(1 + R‖) and E⊥ = 1

2
|U |2R⊥ (16)

are the contributions to the total kinetic energy, E = E‖ + 2E⊥, from the streamwise
and cross-stream components of the velocity.

Since the fluctuations in |U | are small compared to the mean, V‖/|Ū | and V⊥/|Ū |
are approximately equal to the square root of the standard deviations, ∆‖ and ∆⊥, of
the temporal fluctuations in R‖ and R⊥, respectively, i.e.

V‖/|Ū | ∼ ∆
1/2

‖ and V⊥/|Ū | ∼ ∆
1/2
⊥ , (17)
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Re 4f A‖/Re A⊥/Re R‖
1/2

R⊥
1/2

∆
1/2

‖ ∆
1/2
⊥ p/c

32.3 4150 0.0023 0 2.1 1.5 0.092 0.059 p
45.9 7000 0.012 0 2.1 1.5 0.22 0.14 p
83.0 19 000 0.0069 0.0072 2.1 1.5 0.30 0.25 c

Table 2. A comparison of spatial and temporal velocity fluctuations, from lattice-Boltzmann
simulations with (a, c) = (31.8, 0.739), where a is in lattice units. Time averages were obtained from
snapshots of the velocity fields at approximately 10 equally spaced times throughout the fundamental
period of the fluctuations. Recall, A‖ and A⊥ are the standard deviations of the streamwise and
cross-stream components of the spatially averaged velocity, non-dimensionalized with ν/a to give
Reynolds numbers; R‖ and R⊥ are the variances of the streamwise and cross-stream components
of the spatial velocity fluctuations, non-dimensionalized with the square of the magnitude of the
spatially averaged velocity; and ∆‖ and ∆⊥ are the standard deviations of the temporal fluctuations
in R‖ and R⊥, respectively. Periodic and chaotic dynamics are distinguished by the letters p and c,
respectively.

where

∆‖ = (R‖ − R‖)2
1/2

and ∆⊥ = (R⊥ − R⊥)2
1/2

. (18)

Table 2 lists the results obtained from simulations with Reynolds numbers of
approximately 32, 46 and 83, all with sphere radii of 31.8 lattice units. At these
Reynolds numbers, the dynamics of the flows with this grid resolution are similar to
those obtained from simulations with a sphere radius of 48.8 lattice units. Furthermore,
the topology of the underlying velocity fields is practically the same, and, hence,
the velocity variances are sufficiently accurate for the purpose of establishing the
magnitude of the local temporal velocity fluctuations.

The local temporal velocity fluctuations are considerably larger than those of the
spatially averaged velocity. Since the fluctuations in the spatially averaged velocity
have been non-dimensionalized to give Reynolds numbers, A‖ and A⊥, they are
shown in table 2 divided by the Reynolds number, Re, to allow a direct comparison

to be made with R‖
1/2

and R⊥
1/2

, and ∆
1/2

‖ and ∆
1/2
⊥ . This shows that the mean-

squared temporal velocity fluctuations, over the range of Reynolds numbers 32–83,
are in the range of 0.07–0.27 times the spatially averaged velocity, whereas the
temporal fluctuations in the spatially averaged velocity are much smaller, falling in
the range 0.0023–0.012 times the spatially averaged velocity. In fact, the intensity of
the fluctuations in the spatially averaged velocity, relative to the mean, decrease with
increasing Reynolds number, whereas those of the local temporal velocity fluctuations
increase monotonically.

As indicated by the square roots of R‖ and R⊥ in table 2, the velocity variance does
not depend very much on the Reynolds number when it is scaled with the spatially
averaged velocity. This indicates that the topology of the time-averaged velocity
field does not change significantly with increasing Reynolds number. In contrast, the
temporal velocity fluctuations, which are quantified by the square roots of ∆‖ and ∆⊥
in table 2, increase significantly with the Reynolds number.

At all the Reynolds numbers considered here, the time-averaged variance of the
streamwise component of the velocity is approximately twice that of each of the cross-
stream components. However, the temporal velocity fluctuations in the streamwise
and cross-stream directions are comparable at a Reynolds number of 83, whereas at
smaller Reynolds numbers, when the fluctuations are periodic, the temporal fluctu-
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ations in the streamwise direction are considerably larger than those in the cross-
stream directions. This tendency for the fluctuating kinetic energy to be distributed
equally in all directions with increasing Reynolds number is consistent with what is
expected in turbulent flows at very large Reynolds numbers, i.e. at the smallest scales
of a turbulent flow the velocity fluctuations are isotropic and independent of the
large-scale ‘structures’, which are typically anisotropic.

In turbulent flows, the rate at which the kinetic energy of the largest (inertial)
scales is dissipated at the smallest (viscous) scales defines the so-called Kolmogorov
length, time and velocity microscales. These are given by ` = (ν3/ε)1/4, τ = (ν/ε)1/2

and υ = (νε)1/4, respectively, where ε is the rate of viscous dissipation (per unit mass),
which is equal to the rate at which the fluctuating kinetic energy is produced at
the largest scales. If the velocity fluctuations at the largest scales are taken to be
(Re ν/a)(∆‖ + 2∆⊥)1/2/

√
3, and the characteristic time scale for these fluctuations is

assumed to be ω−1
1 , then

ε ∼ (Re ν/a)2(∆‖ + 2∆⊥)/3ω1. (19)

The fundamental frequency, ω1, may be obtained from (9). Substituting the approxi-
mation for ε in (19) into the scaling relationships for the microscales given above,
and using the simulation results in table 2 for a Reynolds number of 83.0 and a
sphere radius of 31.8 lattice units, gives ` ∼ 1.26 lattice units, τ ∼ 160 time steps,
and υ ∼ 8.0 × 10−3 lattice units per time step. This simple analysis helps confirm
that the spatial and temporal resolution of the simulations with a sphere radius of
31.8 lattice units, and hence also those with a sphere radius of 48.8 lattice units, is
sufficient to resolve the smallest length and time scales that could be expected at such
a Reynolds number. The non-dimensional frequency corresponding to the dissipative
time scale seems reasonable, since, at this Reynolds number, the Fourier spectra in
figure 7(d ) show that most of the energy is in modes whose frequencies are less than
approximately 600ν/a2.

At a Reynolds number of approximately 32, the temporal evolution of the vel-
ocity variance in figure 18 shows that the velocity fluctuations in the cross-stream
direction closely follow the changes in the spatially averaged velocity. However, the
velocity fluctuations in the streamwise direction lead by approximately one-third of
a period. Therefore, at this relatively small Reynolds number, inertia mostly affects
the coupling between the streamwise velocity fluctuations and the spatially averaged
velocity, whereas the dynamics of the cross-stream velocity fluctuations are viscous
and quasi-steady. Another way of interpreting these dynamics is to consider the
spatially averaged velocity as responding to the streamwise velocity fluctuations.
Then, the increase (decrease) in the streamwise velocity variance can be thought
of extracting (releasing) energy from (to) the spatially averaged velocity, which lags
by approximately one-third of a period because of its inertia. Again, the cross-
stream velocity fluctuations respond almost instantaneously to the spatially averaged
velocity.

As shown in figure 19, at a larger Reynolds number of approximately 46, the
variance of the cross-stream velocity fluctuations develops a mode whose frequency is
twice the fundamental frequency. The higher frequency harmonic allows the variance
of the cross-stream velocity fluctuations to alternate between following the spatially
averaged velocity, when the spatially averaged velocity decreases, and the streamwise
velocity fluctuations, when the variance of the streamwise velocity fluctuations in-
creases. This demonstrates the increasing role that inertia plays in the cross-stream
direction, and explains the origin of the higher frequency harmonics observed in the
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Figure 18. Time series of the streamwise component of the spatially averaged velocity,
non-dimensionalized with ν/a to give a Reynolds number (circles), and the variances of the
streamwise (squares) and cross-stream (diamonds) components of the velocity divided by the square
of the streamwise component of the spatially averaged velocity. To show their relative phases,
the time series have been divided by their respective time-averaged values. These results are from
lattice-Boltzmann simulations with (Re, a, c) = (32.3, 31.8, 0.739), where a is in lattice units. The data
points identified with symbols are interpolated with splines.
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Figure 19. The same as in figure 18, but with a larger Reynolds number of 45.9. The time between
each data point identified with symbols corresponds to the time separating each projection of the
velocity field shown in figures 11 and 13 – the filled circles identify the first image in the sequence.

Fourier spectra of the fluctuating spatially averaged velocity in § 4.2. Note that the
fluctuations in the variance of the streamwise component of the velocity are qualitat-
ively similar to those at a Reynolds number of 32. This reflects that, at these relatively
small Reynolds numbers, the dynamics of the streamwise velocity fluctuations are
dominated by inertia and are independent of the fluctuations in the cross-stream
directions.

8. Velocity, vorticity and helicity statistics
In this section, the vorticity, ω = ∇ × u, and the quantity ω · u, which when

integrated over the entire volume of fluid is referred to in the context of turbulent
flows as the helicity (Frisch 1995), will be examined. In this work, ω · u, rather than
its integral, will be referred to as the helicity.

Similarly to the velocity, the vorticity is considered as the sum

ω(t) = Ω(t) + ω′(x, t), (20)

where Ω is the spatially averaged vorticity. The variance of the vorticity, non-
dimensionalized with the magnitude of the spatially averaged velocity and the sphere
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radius, is

O(t) = 〈ω′ω′〉a2/|U |2, (21)

where the angled brackets indicate the spatial average, which includes the space
occupied by the spheres. The variance of the streamwise and cross-stream components
of the vorticity are given by the diagonal components of O , which will be referred to
as

O‖ = Oxx and O⊥ = (Oyy + Ozz)/2, (22)

respectively. The vorticity was obtained by differentiating the velocity fields using
central finite-difference approximations.

In any two-dimensional flow, the helicity is identically zero because the vorticity
is perpendicular to the velocity. Since the flow close to the sphere surfaces can
be approximated as a simple shear flow, the helicity there may be expected to be
small provided that the vorticity is not too large. However, when the flow is three-
dimensional, i.e. away from the surfaces of the spheres, the vorticity and velocity may
become much more closely aligned, in which case the streamlines tend to have helical
trajectories. This motivates examining the cosine of the angle between the vorticity
and the velocity,

cosφ =
ω · u
|ω||u| . (23)

The variance of the helicity, non-dimensionalized with the magnitude of the spatially
averaged velocity and the sphere radius, is given by

H(t) = [〈(ω · u)2〉 − 〈ω · u〉2]a2/|U |4, (24)

and the variance of the cosine of the angle between the vorticity and velocity is given
by

C(t) = 〈cos2 φ〉 − 〈cosφ〉2, (25)

where, again, the angled brackets indicate spatial averages. Note that the helicity is
a quantity that is not invariant to a Galilean transformation, and hence it depends
on the average velocity. Nevertheless, it provides a useful means of quantifying the
geometrical structure of the flows.

The PDFs of a quantity α, say, given by P (α), were obtained by sampling only the
space occupied by the fluid. They have been normalized so their standard deviations
and

∫ +∞
−∞ P (α) dα equal one, allowing them to be easily compared to normalized

Gaussian and (double) exponential distribution functions. Note that the variance of α
over the region occupied by the fluid, 〈α′2〉1, is related to the variance over the entire
domain by

〈α′2〉1 = 〈α′2〉/(1− c)− c〈α〉/(1− c)2, (26)

where α′ = α− 〈α〉/(1− c), and the angled brackets indicate spatial averages.
Statistics that may be used to scale the normalized PDFs shown below are listed in

table 3. Also shown, for reference, and to be consistent with the convention adopted
in previous sections, are statistics from the entire domain. Of course, these are related
via (26). Note that the variances have been non-dimensionalized with the spatially
averaged velocity corresponding to the domain of interest.

In the following discussion, the statistics in table 3 will be referred to in conjunction
with selected PDFs when necessary. The results in table 3 are from: (i) simulations
of two steady flows with nominal Reynolds numbers of zero and 25; (ii) three time
steps from a simulation whose velocity undergoes periodic temporal fluctuations at a
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t′ω1 4f Re R‖ R⊥ O‖ O⊥ H C

(steady) 1.0 0.0132 4.33 2.34 293 447 29.2 0.00142
0.510 0.380 0.606 75.9 116 0.507 0.0548

(steady) 3000 25.4 4.57 2.30 495 600 7230 0.0550
98.1 0.443 0.596 128 155 126 0.212

0 7000 44.8 4.65 2.47 734 729 20 700 0.0733
173 0.463 0.640 190 189 360 0.283

0.306 7000 45.4 4.54 2.46 650 673 15 100 0.0656
175 0.435 0.637 168 174 262 0.253

0.612 7000 46.7 4.54 2.44 638 677 13 400 0.0641
180 0.435 0.632 165 175 233 0.247

(chaotic) 29 000 107 4.86 2.55 1040 1020 38 100 0.0812
413 0.518 0.660 269 264 662 0.314

Table 3. Statistics from selected lattice-Boltzmann simulations with (a, c) = (48.8, 0.741), where a
is in lattice units. Statistics on odd lines are from the entire computational domain, whereas those
on even lines are from the region occupied by fluid. Note that t′ is the time relative to that of the
realization with t′ = 0.

nominal Reynolds number of 45; and (iii) a single time step from a simulation whose
velocity undergoes chaotic temporal fluctuations at a nominal Reynolds number of
110. The second line of data for each case corresponds to statistics obtained from
only the region occupied by the fluid; these are the values that will be referred to in
the following discussion, and which were used to scale the abscissae of the normalized
PDFs shown below. The Reynolds numbers will still be referred to based on the
velocity averaged over the entire domain.

8.1. Velocity

The variances of the streamwise and cross-stream components of the velocity do not
change significantly with increasing Reynolds number. This might be expected, since
the largest contribution to the velocity variance in closely packed arrays of spheres
comes from the fluid having to flow along tortuous trajectories close to the solid
surfaces. The variance of the streamwise component of the velocity in the region
occupied by the fluid is actually smaller than that of the cross-stream components,
whereas over the entire domain it is larger. As suggested by (26), this qualitative
difference is because of the contribution from the spatially averaged streamwise
velocity.

The PDFs of the velocity shown in figures 20 and 21 are from the simulations
with nominal Reynolds numbers of 25 and 110, respectively. The PDFs are similar
when they are normalized with their respective standard deviations, but not to the
same extent as those obtained by Kutsovsky et al. (1996) at Reynolds numbers in the
approximate range 2.6–8.1. Clearly then, over a relatively large range of Reynolds
numbers, the topology is sufficiently different to change the details of the velocity
PDFs, but not enough to be detected in the variances of the velocity fluctuations.
At larger Reynolds numbers, there is a significantly larger portion of the fluid whose
streamwise velocity is directed upstream. These regions are not only because of
recirculating flow attached to the downstream faces of the spheres, but also because
of vortices whose axes have a component perpendicular to the x-axis. The largest
differences occur in the streamwise components of the velocity, particularly the
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Figure 20. Normalized probability distribution functions, at a single instant in time, of the x- (circles)
y- (squares) and z- (diamonds) components of the fluid velocity obtained from lattice-Boltzmann
simulations with (a, c) = (48.8, 0.741), where a is in lattice units. The small symbols correspond to
steady flow with a Reynolds number of 25.4, and the large symbols correspond to unsteady flow
with a Reynolds number of 106. The line is a Gaussian distribution with zero mean and a standard
deviation of one. Note that the PDFs for the y- and z-components are identical when the flow is
steady, and hence only the PDF for the y-component is shown.
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Figure 21. The same data as in figure 20, but with the axes scaled to show more clearly the PDFs
at small velocities.

contribution from the fluid moving slowly upstream. The tails of the PDFs decay
more rapidly than the Gaussian distribution shown for comparison, although the
tails of the PDFs of the two cross-stream components of the velocity appear to
approach the Gaussian distribution at the largest Reynolds number when the flow
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undergoes large-amplitude chaotic fluctuations. These results support the suggestion
by Kutsovsky et al. (1996) that the exponentially decaying tails observed for flows
in randomly packed beds is because of the distribution of pore sizes, rather than
the distribution of velocities found within an individual pore. This seems reasonable
when considering that the average drag force on the spheres in randomly packed beds
– given by the Ergun correlation, for example (Hill et al. 2001b) – is very sensitive
to the solid volume fraction, and hence small variations in the local porosity give
rise to large variations in the local fluid velocity. Note that PDFs of the velocity
at various times throughout the fundamental period of the unsteady flow whose
Reynolds number is 45 are qualitatively the same as those shown here, at a single
instant in time, at a nominal Reynolds number of 110.

8.2. Vorticity

In contrast to the variance of the velocity, the variance of the streamwise and
cross-stream components of the vorticity increases monotonically with increasing
Reynolds number. The variance of the streamwise component of the vorticity increases
approximately linearly with the Reynolds number. When the flow is steady, the
variance of the cross-stream components of the vorticity is significantly larger than
that of the streamwise component. With the onset of unsteady flow, however, all the
components are approximately equal. This is presumably because of vortex stretching.
Without vortex stretching, vorticity is produced by shear flow at the solid surfaces,
contributing mostly to the cross-stream vorticity. This is confirmed by the variances
of the vorticity shown in table 3 for Stokes flow.

The PDFs of the vorticity shown in figures 22 and 23 are from three time steps
of a simulation whose Reynolds number is 45. Similarly to the velocity, the PDFs
of the streamwise components are qualitatively different from those of the cross-
stream components. At values less than approximately three standard deviations
from the mean, the PDFs of the cross-stream components of the vorticity decay
exponentially and do not vary much with time. This is because the cross-stream
components of the vorticity come from the region of the flow close to the surfaces
where the temporal fluctuations in the velocity are relatively small. The PDFs of the
streamwise component of the vorticity undergo much larger temporal fluctuations.
These fluctuations are not confined to the tails of the distributions, since the large-
amplitude velocity fluctuations presumably contribute to both large and small values
of the streamwise vorticity.

8.3. Helicity

Even more sensitive to the Reynolds number is the variance of the cosine of the
angle between the vorticity and the velocity. It increases by a factor of approximately
five over the range of Reynolds numbers from zero to the onset of unsteady flow,
beyond which it remains approximately constant. Figure 24 shows PDFs of cosφ
from the simulations with nominal Reynolds numbers of 25 and 110. These show
that, with increasing Reynolds number, the portion of the fluid whose vorticity is
aligned with the velocity increases significantly. This supports the mechanism by which
kinetic energy in the fluctuating spatially averaged velocity is transferred to velocity
fluctuations at smaller scales by generating helical vortices. It is interesting to note
that the PDF of cosφ is the only one of those examined here to change significantly
(qualitatively) with the Reynolds number and, indeed, with the fluctuating spatially
averaged velocity. The PDFs of cosφ are periodic in φ, and hence the abscissae have
not been scaled with the standard deviation. Although not shown here, the PDF
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Figure 22. Normalized probability distribution functions of the x-component of the vorticity
obtained from lattice-Boltzmann simulations with (Re, a, c) = (45.7, 48.8, 0.741), where a is in lattice
units. At this Reynolds number, the flow is periodic with a fundamental frequency ω1 = 122ν/a2.
The circles, squares and diamonds correspond to three equally spaced instants in time that span
approximately half the fundamental period of the oscillations. The lines are double exponential
(solid) and Gaussian (dotted) distributions with zero mean and a standard deviation of one.
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Figure 23. As figure 22 but for the y-component of the vorticity.

of cosφ for Stokes flow rapidly decays to zero when cosφ ∼ 0.2, and the peak at
cosφ = 0 is approximately 16. Clearly then, the contribution to the PDFs at absolute
values of cosφ greater than approximately 0.2 is entirely due to the effects of fluid
inertia. Note that the PDF of cosφ close to cosφ = 0 and, indeed, the height of
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Figure 24. Normalized probability distribution function, at a single instant in time, of the cosine of
the angle between the velocity and the vorticity obtained from lattice-Boltzmann simulations with
(a, c) = (48.8, 0.741), where a is in lattice units. The small symbols correspond to steady flow with
a Reynolds number of 25.4, and the large symbols correspond to unsteady flow with a Reynolds
number of 106.

the peak at cosφ = 0 do not fluctuate. This suggests that the velocity field does
not change significantly in those regions close to the spheres where the velocity and
vorticity are perpendicular to one another. Furthermore, the magnitude of the peak
at cosφ = 0 is between those shown at smaller and larger Reynolds numbers in
figure 24, suggesting that at large Reynolds numbers the fluid in the outer region of
the flow penetrates further into the shear-dominated flow close to the spheres.

At a nominal Reynolds number of 45, when the temporal fluctuations are periodic,
the variance of cosφ does not change significantly, but the PDFs in figure 25 show
that there are significant changes near cosφ = ±1. These can be explained by the
alternating sign of the streamwise vorticity, which, recall, was identified from the
projections of the velocity field shown in figure 13. The symmetries that the flow
adopts, at least in the case where there are periodic temporal fluctuations, necessitate
that the net vorticity be directed at all times along the x-axis, which, together with
the changing sign, gives rise to an exchange of probability between angles close to
zero and π, or between cosφ = 1 and −1, respectively.

As the PDFs in figure 26 show, the helicity, which combines the vorticity and
velocity, is exponentially distributed. Furthermore, in contrast to the PDFs of the
velocity and vorticity, the PDFs of the helicity undergo relatively large temporal
fluctuations over a large range of the abscissa. Since the PDFs of the velocity and
vorticity do not undergo such significant changes, this behaviour suggests that the
fluctuations are because of the fluctuating angle between the vorticity and velocity.
Indeed, the PDFs of the cosine of the angle between the velocity and vorticity undergo
significant temporal fluctuations, particularly in the tails, since the largest contribution
to the PDFs coming from cosφ near zero is from the small-amplitude fluctuations in
the shear flow close to the solid surfaces.
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Figure 25. Normalized probability distribution functions of the cosine of the angle between
the velocity and the vorticity obtained from lattice-Boltzmann simulations with (Re, a, c) =
(45.7, 48.8, 0.741), where a is in lattice units. At this Reynolds number, the flow is periodic with a
fundamental frequency ω1 = 122ν/a2. The circles, squares and diamonds correspond to three equally
spaced instants in time that span approximately half the fundamental period of the oscillations.
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Figure 26. As figure 25 but for the helicity.

8.4. Statistics in a fluid sub-domain

All the statistics discussed above were obtained from the entire domain occupied by
the fluid, and, hence, they were significantly influenced by the regions close to the
sphere surfaces. This resulted in characteristic peaks in the velocity PDFs at low
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velocities, for example. The PDFs of the cosine of the angle between the velocity and
vorticity were also dominated by the contribution from the shear flow close to the
sphere surfaces. To briefly examine to what extent the fluid close to the spheres affects
the statistics, the velocity, vorticity, helicity and cosφ were sampled only in a cubic
sub-domain, centred at the origin, occupied only by the fluid (see figure 1). These
statistics are compared to those from the entire domain in table 4. In both cases, the
results are non-dimensionalized with the spatially averaged velocity on the respective
domain, and therefore some care must be taken when comparing the results.

These statistics are from simulations with a sphere radius of 31.8 lattice units,
and hence their absolute values may not be as accurate as those in table 3 from
simulations with a sphere radius of 48.8 lattice units. For this reason, statistics from
a steady flow whose nominal Reynolds number is 25 are also shown. These may
be compared directly with the statistics in table 3 from simulations with the same
nominal Reynolds number, but with a larger sphere radius of 48.8 lattice units. In
general, with the notable exception of the vorticity and helicity statistics, the results
are in good agreement. The ratio of the variance of the streamwise vorticity to that
of the cross-stream vorticity are within 6% of each other, suggesting that the results
are sufficiently accurate for at least qualitative comparisons.

The temporal variations are all relatively small, and hence it is sufficient to focus
only on the results at one instant. The spatially averaged velocity in the sub-domain
is approximately four times larger than when averaged over the entire domain. This
is almost entirely because the average does not include the large volume occupied
by the spheres. The spatial velocity variance is considerably smaller, relative to the
square of the spatially averaged velocity, and the fluctuations are much more isotropic,
but, nevertheless, they are still larger in the streamwise direction than in the cross-
stream directions. In contrast, the spatial variance of the streamwise component of
the vorticity is larger – by a factor of approximately two – than the two cross-stream
components. When sampling the entire domain, the vorticity is dominated by the
contribution from the shear flow at the sphere surfaces where the vorticity is mostly
perpendicular to the streamlines and, hence, directed predominantly in the cross-
stream directions. The apparently large difference in the variances of the helicity
is more difficult to interpret. If the variance of the helicity is instead scaled with
the product of the mean-squared vorticity and the square of the spatially averaged
velocity, then the non-dimensional variances of the helicity, for both the cubic sub-
domain and the entire region occupied by the fluid, are within 5% of each other,
instead of the approximately 50% differences shown in table 4.

9. Summary
The sequence of transitions in going from steady to chaotic unsteady flow in a

close-packed face-centred cubic array of spheres has been examined using lattice-
Boltzmann simulations. All the simulations were performed with the average pressure
gradient directed along the primary axis of symmetry of the array.

At Reynolds numbers where the flow is steady, the velocity field has the same
symmetries as the underlying geometry. At a Reynolds number of approximately 30,
the transition to unsteady flow occurs via a supercritical Hopf bifurcation in which
only the streamwise component of the spatially averaged velocity fluctuates. The
transition to unsteady flow is accompanied by a breaking of rotational symmetry,
resulting from the development of a vortex at the centre of the domain whose axis is
aligned with the flow and whose direction of rotation alternates with the fundamental
frequency.
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t′ 4f Re R‖ R⊥ O‖ O⊥ H C

0 19 000 82.4 4.71 2.27 685 732 25 300 0.0771
310 0.519 0.604 182 195 476 0.290
325 0.557 0.404 161 88.1 293 0.358

50 19 000 82.3 4.68 2.33 716 728 27 600 0.0800
309 0.511 0.620 190 194 519 0.301
328 0.537 0.418 164 86.7 318 0.379

100 19 000 82.7 4.61 2.35 718 721 28 200 0.0805
311 0.492 0.625 191 192 531 0.303
332 0.488 0.426 163 81.5 291 0.375

150 19 000 82.8 4.56 2.39 720 713 27 300 0.0783
311 0.479 0.636 192 190 514 0.294
336 0.464 0.423 159 79.0 265 0.363

(steady) 3000 25.9 4.46 2.19 400 514 6810 0.0513
97.4 0.452 0.583 106 137 128 0.193

Table 4. Statistics from selected lattice-Boltzmann simulations with (a, c) = (31.8, 0.734), where a is
in lattice units. Statistics on the first line at each time are from the entire computational domain,
those on the second line are from the entire region occupied by the fluid, and those on the third
are from a cubic sub-domain (centred at the origin) occupied only by fluid. Note that t′ is the time
relative to that of the realization with t′ = 0.

At a Reynolds number of approximately 50, a further symmetry-breaking bi-
furcation occurs, giving rise to quasi-periodic fluctuations with three fundamental
frequencies. Symmetry breaking is accompanied by the onset of fluctuations in all
three components of the spatially averaged velocity. In this case, the dynamics of
the two cross-stream components of the spatially averaged velocity are different. At
an only slightly larger Reynolds number, the Fourier spectra become continuous,
indicating the onset of chaotic dynamics. Then, with increasing Reynolds number,
the temporal velocity fluctuations become increasingly isotropic.

The probability distribution functions of the velocity, vorticity and helicity, and
visualizations of the unsteady flows in various dynamic states, show that vortices are
produced in which the velocity and vorticity are closely aligned with one another. With
increasing Reynolds number, the geometrical structure of the flow changes from one
that is dominated by extension and simple shear to one in which the streamlines are
helical. A mechanism for the dynamics was proposed in which energy is transferred
to smaller scales by the dynamic interaction of vortices sustained by the underlying
time-averaged flow.

The distribution of the angle between the velocity and vorticity was shown to
be a quantity that depends very much on the Reynolds number and undergoes
significant temporal fluctuations. The PDFs of the velocity and vorticity, however,
do not change significantly with the Reynolds number when the abscissae are scaled
with their respective standard deviations. The tails of the velocity PDFs decay slightly
faster than Gaussian distributions, but approach Gaussian distributions at the largest
Reynolds numbers.

This computational study goes some way toward characterizing turbulent flows
in porous media, particularly at the relatively small Reynolds numbers where the
transition occurs. The geometrical characteristics of the simulated steady flows are in
agreement with experimental observations reported in the literature. As yet, however,
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there are no quantitative experimental studies examining the dynamics of such flows.
Indeed, it would be an interesting and challenging task to make such a comparison.
The length and time scales of the flows reported here should assist in the design
of such an experiment. The physical mechanisms revealed by these simulations will
also hopefully contribute toward the development of models for moderate-Reynolds-
number flow, dispersion, and mixing in porous media.
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Andrew Reynolds (Silsoe Research Institute) for helpful discussions.

REFERENCES

Dybbs, A. & Edwards, R. V. 1984 A new look at porous media fluid mechanics – Darcy to
turbulent. In Fundamentals of Transport Phenomena in Porous Media (ed. J. Bear & M. Y.
Corapcioglu), pp. 199–254. Martinus Nijhoff.

Frisch, U. 1995 Turbulence. Cambridge University Press.

Ghaddar, C. K. 1995 On the permeability of unidirectional fibrous media: a parallel computational
approach. Phys. Fluids 7, 2563–2586.

Hill, R. J. 2001 The effects of fluid inertia on flows in porous media. PhD thesis, Cornell University.

Hill, R. J. & Koch, D. L. 2002 Moderate-Reynolds-number flow in a wall-bounded porous medium.
J. Fluid Mech. 453, 315–344.

Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001a The first effects of fluid inertia on flows in ordered
and random arrays of spheres. J. Fluid Mech. 448, 213–241.

Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001b Moderate-Reynolds-number flows in ordered and
random arrays of spheres. J. Fluid Mech. 448, 243–278.

Hinze, J. O. 1987 Turbulence. McGraw-Hill.

Jolls, K. R. & Hanratty, T. J. 1966 Transition to turbulence for flow through a dumped bed of
spheres. Chem. Engng Sci. 21, 1185–1190.

Karabelas, A. J., Wegner, T. H. & Hanratty, T. J. 1973 Flow pattern in a close packed cubic
array of spheres near the critical Reynolds number. Chem. Engng Sci. 28, 673–682.

Kaviany, M. 1995 Principles of Heat Transfer in Porous Media. Springer.

Koch, D. L. & Ladd, A. J. C. 1997 Moderate Reynolds number flows through periodic and random
arrays of aligned cylinders. J. Fluid Mech. 349, 31–66.

Kutsovsky, Y. E., Scriven, L. E., Davis, H. T. & Hammer, B. E. 1996 NMR imaging of velocity
profiles and velocity distributions in bead packs. Phys. Fluids 8, 863–871.

Ladd, A. J. C. 1994a Numerical simulations of particulate suspension via a discretized Boltzmann
equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309.

Ladd, A. J. C. 1994b Numerical simulations of particulate suspension via a discretized Boltzmann
equation. Part 2. Numerical results. J. Fluid Mech. 271, 311–339.

Lahbabi, A. & Chang, S. C. 1985 High Reynolds number flow through cubic arrays of spheres.
Chem. Engng Sci. 40, 435–447.

Lebon, L., Oger, L., Leblond, J., Hulin, J. P., Martys, N. S. & Schwartz, L. M. 1996 Pulsed
gradient NMR measurements and numerical simulation of flow velocity distribution in sphere
packings. Phys. Fluids 8, 293–301.

Maier, R. S., Kroll, D. M., Kutovsky, Y. E., Davis, H. T. & Bernard, R. S. 1998 Simulation of
flow through bead packs using the lattice-Boltzmann method. Phys. Fluids 10, 60–74.

van der Merwe, D. F. & Gauvin, W. H. 1971 Velocity and turbulence measurements of air flow
through a packed bed. AIChE J. 17, 519–528.

Mickley, H. S., Smith, K. A. & Korchak, E. I. 1965 Fluid flow in packed beds. Chem. Engng Sci.
20, 237–246.



Transition to turbulent flow in an array of spheres 97

Reynolds, A. M., Reavell, S. V. & Harral, B. B. 2000 Flow and dispersion through a close-packed
fixed bed of spheres. Phys. Rev. E. 62, 3632–3639.

Tennekes, H. & Lumley, J. H. 1994 A First Course in Turbulence. The MIT Press.

Wegner, T. H., Karabelas, A. J. & Hanratty, T. J. 1971 Visual studies of flow in a regular array
of spheres. Chem. Engng Sci. 26, 59–63.


